(Virginia Polytechnic Institute and State University) Researchers from across the world, including from Virginia Tech, plan to mimic the chemistry of the brown rot fungus to improve biorefining processes. BioMim, a $4 million, four-year project funded by the Research Council of Norway with industrial partners Borregaard and Kebony, will also seek better ways to protect wood products.
“A key part of the work will focus on the breakdown of the cellulose portion of biomass to produce component sugars that can then be fermented to biofuels,” said project leader Gry Alfredsen of the Norwegian Institute of Bioeconomy Research. “But today, in addition to alcohols, fermentation processes can generate a variety of platform chemicals, such as for use in making plastics and resins, so this will also be a focus.”
…
“One of the key problems in current biorefinery systems is finding a way to disentangle the lignin, which, at the nanoscale, forms a tight plastic coating around the cellulose fibers, to thus free up the cellulose for a variety of applications,” said Barry Goodell, professor of sustainable biomaterials in Virginia Tech’s College of Natural Resources and Environment.
The BioMim project will explore two processes. The first is a technology developed by Goodell that borrows from the processes used by brown rot fungi that are commonly found breaking down woody debris on the forest floor — and sometime also damaging homes, decks, and other structural products. The resulting catalytic process for freeing cellulose from lignin has now been demonstrated at pilot scale. The BioMim team will expand on this technology and explore how it can be used efficiently in large-scale biorefineries.
The second part of the process uses a newly discovered enzymatic system discovered by the group of team member Vincent Eijsink, professor at the Norwegian University of Life Sciences. This new enzyme system may permit further deconstruction of the cellulose portion of the wood biomass once freed from the lignin. READ MORE